Skip Navigation
Skip to contents

JYMS : Journal of Yeungnam Medical Science

Indexed in: ESCI, Scopus, PubMed,
PubMed Central, CAS, DOAJ, KCI
FREE article processing charge
OPEN ACCESS
SEARCH
Search

Articles

Page Path
HOME > J Yeungnam Med Sci > Volume 14(2); 1997 > Article
Original Article Effect of NG-nitro-L-arginine methyl ester and Methylene Blue on the Endotoxin-induced Vascular Hyporesponsiveness.
Hyoung Chul Choi, Jeoung Hee Ha, Kwang Youn Lee, Won Joon Kim, Uy Dong Sohn
Journal of Yeungnam Medical Science 1997;14(2):337-349
DOI: https://doi.org/10.12701/yujm.1997.14.2.337
Published online: December 31, 1997
1Department of Pharmacology Collegy of Medicine, Yeungnam University Taegu, Korea.
2Department of Pharmacology Collegy of Pharmacy, Chungang University Seoul, Korea.
  • 1,363 Views
  • 3 Download
  • 0 Crossref
  • 0 Scopus

The study was undertaken to examine the intensity of involvement of inducible nitric oxide synthase(iNOS) and cyclic GMP signal transduction pathway as one of the mechanisms of vaso-relaxative action of bacterial lipopolysaccharide (LPS) on the canine femoral artery strips. Canine femoral arteries were isolated and spiral strips of 10 mm long and 2 mm wide were made in the Tyroad solution of 0-4degrees C. The strips were prepared for isometric myography in Biancani's isolated muscle chamber contaning 1 ml of Tyrode solution, which was maintained with pH 7.4 by areation with 95% O2/5% CO2 at 37degrees C and nitric oxide (NO) production was measured simulltaneously with isolated nitric oxide mrter. LPS induced NO production, suppressed the phenylephrine (PE) induced contraction and enhanced the acetylcholine (ACh) induced relaxation. NG-nitro-L-arginine methyl ester (L-NAME), an NOS inhibitor, methylene blue, a guanylyl cyclase inhibitor, potentiated PE induced contraction and suppressed ACh induced relaxation on the LPS treated strips. The inhibitory potency of methylene blue for LPS induced vascular hyporeponsiveness was stronger than that of L-NAME. These result suggest that in canine femoral artery, both iNOS and cyclic GMP signal transduction pathway are related with LPS indused vascular hyporeponsiveness, but in minor with iNOS and in major with cyclic GMP signal transduction pathway.

Related articles

JYMS : Journal of Yeungnam Medical Science