Skip Navigation
Skip to contents

JYMS : Journal of Yeungnam Medical Science

Indexed in: ESCI, Scopus, PubMed,
PubMed Central, CAS, DOAJ, KCI
FREE article processing charge
OPEN ACCESS
SEARCH
Search

Articles

Page Path
HOME > J Yeungnam Med Sci > Volume 14(1); 1997 > Article
Original Article Utilization of Supercompensated Glycogen of Hindlimb Muscles during Strenous Exercise in Rats.
Chun Bae Jun, Jong Chul Ahn, Dae Deup Song, Suck Kang Lee
Journal of Yeungnam Medical Science 1997;14(1):137-154
DOI: https://doi.org/10.12701/yujm.1997.14.1.137
Published online: June 30, 1997
1Department Orthopaedic Surgery, College of Medicine Yeungnam University, Taegu, Korea.
2Department of Physiology, College of Medicine Yeungnam University, Taegu, Korea.
  • 1,395 Views
  • 3 Download
  • 0 Crossref
  • 0 Scopus

The aim of the present investigation has been to evaluate the depletion pattern of the supercompensated glycogen of hindlimb muscles during strenous exercise in rats. The plan of the maximizing muscle glycogen stores is based on the fact that a glycogen-depleted muscle by exercise will have an increased avidity for glycogen when exposed to a high carbohydrate diet. The glycogen concentration of soleus, red gastrocnemius and plantaris muscle, and liver was measured at 0, 30 and 60 minutes during treadmill exercise. The experimental animals were divided into 5 group - Normal(N), Control(C), 1Hour(1HR:after 1hour of glucose ingestion), 2Hour(2HR:after 2hour of glucose ingestion) and Exercise-1Hour(EX-1HR:glucose ingestion after 1 hour of preloading treadmill exercise)group - for glycogen storage study. The glycogen concentration of soleus, red gastrocnemius and plantaris muscles in N group was 4.57+/-0.34, 5.11+/-0.24 and 6.55+/-0.20 mg/gm wet wt., respectively. The glycogen concentration of soleus and red gastrocnemius in EX-1HR group were about 1.9 and 1.8 times than that of N group, respectively, but the concentration of plantaris was not higher than that of N group. The glycogen concentration of liver in N group was 41.0+/-1.47mg/gm wet wt. and the concentration of the overnight fasted C group wad only 2.9% of the value of N group. The level of glycogen concentration of liver in the other glucose ingested groups(1HR, 2HR, including EX-1HR) was within 19 - 32% of that of N group. The blood glucose concentration of EX-1HR group was higher than that of N group, the plasma free fatty acid concentration of C and 2HR group was higher than that of N group, and the plasma insulin concentration of EX-1HR group was higher than that of N group. The concentration of supercompensated glycogen of soleus and red gastrocnemius were rapidly decreased during 30 minutes of exercise but there was almost no changes of the concentration during the other 30 minutes of continuing exercise. The concentration of N group during 30 minutes of exercise was decreased but more slowly than those of EX-1HR group. The remaining level of glycogen after 60 minutes of exercise in EX-1HR group was higher than that of N group. Taken together, the mobilization of endogenous muscle glycogen at the first stage of exercise was proportioned to the intial level of glycogen concentration, and later on, when exercise continued, the muscle glycogen level was stabilized. And the remaining level of supercompensated muscle glycogen after 60 minutes of exercise was higher than that of normally stored glycogen level. The mobilization of the glycogen stroed in slow and fast oxidative muscle fibers is faster than in the fast glycolytic muscle fibers during strenous exercise.

Related articles

JYMS : Journal of Yeungnam Medical Science